Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 2483-2493, 2023.
Article in Chinese | WPRIM | ID: wpr-999104

ABSTRACT

Autophagy often occurs after cells are attacked by oxidative stress, where damaged structures are phagocytic and degraded into nutrients, thereby reducing oxidative damage, promoting the survival of cancer cells and reducing the therapeutic effect of photodynamic therapy (PDT). However, excessive activation of autophagy can promote cell apoptosis. In this paper, the photosensitizer pyropheophorbide-a (Ppa) was used to produce a large amount of reactive oxygen species (ROS) to achieve the effect of killing cancer cells. At the same time, icaritin (Ica), an autophagy inducer, was used to over-activate autophagy, which transformed the protection of cancer cells into the promotion of cancer cell apoptosis, so as to improve the effect of photodynamic therapy. In this study, the interaction force between Ica and Ppa was exploited to successfully construct a self-assembled nanomedicine IP with good stability and high drug load. The synthesis method is simple, through using the drug itself as a carrier, and the loading capacity (LA) of Ica and Ppa can be increased to 83.53% and 16.45% without introducing potential biosafety risks of nanocarriers. Compared with free Ppa, self-assembled nanomedicine IP showed superior performance in cellular uptake and reactive oxygen species production. In addition, the self-assembled nanomedicine IP can reverse the protective autophagy induced by PDT by activating the autophagy of tumor cells, and facilitate apoptosis and antitumor coordination, which significantly improves the antitumor activity of PDT.

SELECTION OF CITATIONS
SEARCH DETAIL